JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy.

Acta Biomaterialia 2018 December 20
Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. DDSs can spatiotemporally present tumor antigens, drugs, immunostimulatory molecules, or adjuvants, thus enabling the modulation of immune cells including dendritic cells (DCs) or T-cells directly in vivo and thereby provoking robust antitumor immune responses. Cancer vaccines, immune checkpoint blockade, and adoptive cell transfer have shown promising therapeutic efficiency in clinic, and the incorporation of DDSs may further increase antitumor efficiency while decreasing adverse side effects. This review focuses on the use of nano-, micro-, and macroscale DDSs for co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. Regarding to nanoparticle-based DDSs, we emphasize the nanoparticle-based tumor immune environment modulation or as an addition to gene therapy, photodynamic therapy, or photothermal therapy. For microparticle or capsule-based DDSs, an overview of the carrier type, fabrication approach, and co-delivery of tumor vaccines and adjuvants is introduced. Finally, macroscale DDSs including hydrogels and scaffolds are also included and their role in personalized vaccine delivery and adoptive cell transfer therapy are described. Perspective and clinical translation of DDS-based cancer immunotherapy is also discussed. We believe that DDSs hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. In this comprehensive review we focus on the use of nano-, micro- and macroscale DDSs for co-delivery of different immunostimulatory factors to re-program the immune system to combat cancer. We also propose the perspective on the development of next generation DDSs-based cancer immunotherapy. This review indicates that DDSs can augment the antitumor T-cell immunity and hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy, by simultaneous delivery of dual or multiple immunostimulatory drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app