Add like
Add dislike
Add to saved papers

Increased energetic demand supported by mitochondrial electron transfer chain and astrocyte assistance is essential to maintain the compensatory ability of the dopaminergic neurons in an animal model of early Parkinson's disease.

Mitochondrion 2018 December 20
Partial degeneration of dopaminergic neurons in the substantia nigra (SN), induces locomotor disability in animals but with time it is spontaneously compensated for by neurons surviving in the tissue by increasing their functional efficiency. Such compensation probably increases energy requirements and astrocyte support could be essential for this ability. We studied the effect of degeneration of dopaminergic neurons induced by the selective toxin 6-hydroxydopamine and/or death of 30% of astrocytes induced by chronic infusion of the glial toxin fluorocitrate on functioning of the mitochondrial electron transfer chain (ETC) complexes (Cxs) I, II, IV and their higher assembled forms, supercomplexes in the rat SN. Astrocyte death decreased Cx I and IV performance, while significantly increased the amount of Cx II protein SDHA, indicating system adaptation. After death of 50% of dopaminergic neurons in the SN, we observed increased mitochondrial Cxs performing, especially Cx I and IV in the remaining cells. It corresponded with reduction of behavioural deficits. Those results support the hypothesis that the compensatory ability of surviving neurons requires meeting their higher energetic demand by ETC. When astrocytes were defective, the neurons remaining after partial lesion were not able to enhance their functioning anymore and compensate for deficits. It proves in vivo that astrocytic support is important for compensatory potential of neurons in the SN. Neuro-glia cooperation is fundamental for compensation for early deficits in the nigrostriatal system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app