Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Synthesis, characterization and biological studies of rhenium, technetium-99m and rhenium-188 pentapeptides.

A pentapeptide macrocyclic ligand, KYCAR (lysyl-tyrosyl-cystyl-alanyl-arginine), has been designed as a potential chelating ligand for SPECT imaging and therapeutic in vivo agents. This study shows the synthesis and characterization of KYCAR complexes containing nonradioactive rhenium, 99m Tc, or 188 Re. The metal complexes were also biologically evaluated to determine in vivo distribution in healthy mice. The overall goals of this project were (1) to synthesize the Tc/Re pentapeptide complexes, (2) to identify spectroscopic methods for characterization of syn versus anti rhenium peptide complexes, (3) to analyze the ex vivo stability, and (4) to assess the biological properties of the [99m Tc]TcO-KYCAR and [188 Re]ReO-KYCAR complexes in vivo. Details on these efforts are provided below.

METHODS: Nat Re/99m Tc/188 ReO-KYCAR complexes were synthesized, and macroscopic species were characterized via HPLC, IR, NMR, and CD. These characterization data were compared to the crystallographic data of ReO-KYC to assist in the assignment of diastereomers and to aid in the determination of the structure of the complex.

RESULTS: The radiometal complexes were synthesized with high purity (>95%). HPLC, IR, NMR and CD data on the macroscopic nat ReO-KYCAR complexes confirm the successful complexation as well as the presence of two diastereomers in syn and anticonformations. Tracer level complexes show favorable stabilities ex vivo for 2+ h.

CONCLUSION: Macroscopic metal complexes form diastereomers with the KYCAR ligand; however, this phenomenon is not readily observed on the tracer level due to the rapid interconversion. It was determined through pKa measurements that the macroscopic nat ReO-KYCAR complex is 0 at physiological pH. The [99m Tc]TcO-KYCAR is stable in vitro while the [188 Re]ReO-KYCAR shows 50% decomposition in PBS and serum. Biologically, the tracer level complexes clear through the hepatobiliary pathway. Some decomposition of both tracers is evident by uptake in the thyroid and stomach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app