Add like
Add dislike
Add to saved papers

Symbiotic Performance of Sinorhizobium meliloti Lacking ppGpp Depends on the Medicago Host Species.

Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆ relA , which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula . We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆ relA performed almost WT-like on M. truncatula , except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆ relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆ relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity-related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula , in which it may be involved in processes that optimize nitrogen fixation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app