Add like
Add dislike
Add to saved papers

Thermopower-Based Hot Electron Thermometry of Helium Surface States at 1.6 K.

Physical Review Letters 2018 December 8
We have developed a method to probe the temperature of surface state electrons (SSE) above a superfluid helium-4 surface using the Seebeck effect. In contrast to previously used SSE thermometry, this technique does not require detailed knowledge of the nonlinear mobility. We demonstrate the use of this method by measuring the heating of SSE at 1.6 K in a microchannel device with 0.6  μm deep helium. In this regime, both vapor atom scattering and 2-ripplon scattering contribute to energy relaxation to which we compare our measurements. We conclude that this technique provides a reliable measure of electron temperature while requiring a less detailed understanding of the electron interactions with the environment than previously utilized thermometry techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app