Add like
Add dislike
Add to saved papers

Influence of humeral abduction angle on axial rotation and contact area at the glenohumeral joint.

BACKGROUND: Although the elevation angle of the arm affects the range of rotation, it has not been evaluated up to the maximal abduction angle. In this study we conducted an evaluation up to maximal abduction and determined the contact patterns at the glenohumeral (GH) joint.

METHODS: Fourteen healthy volunteers (12 men and 2 women; mean age, 26.9 years) with normal shoulders (14 right and 8 left) were instructed to rotate their shoulders at 0°, 90°, 135°, and maximal abduction for each shoulder at a time. Using 2-dimensional and 3-dimensional single-plane image registration, the internal rotation (IR), external rotation (ER), and range of motion (ROM; ie, axial rotations) at the thoracohumeral (TH) and GH joints, and the contribution ratio (%ROM = GH-ROM/TH-ROM) were calculated for each abduction. The glenoid position with respect to the humeral head was also analyzed.

RESULTS: The TH-IR and TH-ER shifted toward an ER with increasing abduction angle, whereas the TH-ROM significantly decreased except at abduction between 0° and 90° (P < .001). The GH-IR and GH-ROM significantly decreased except at abduction between 0° and 90° (P < .001), but the GH-ER remained constant regardless of the abduction. The contribution ratio exceeded 80% for every abduction angle. The glenoid moved on the central and posterior areas of the humeral head at 0° and 90° abduction, respectively, and on the posterosuperior and anterosuperior areas at 135° and maximal abduction, respectively.

CONCLUSION: Our results provide new knowledge about wide axial rotation up to maximal abduction and constant GH-ER at any abduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app