Add like
Add dislike
Add to saved papers

Microfluidic platform for multimodal analysis of enzyme secretion in nanoliter droplet arrays.

Analytical Chemistry 2018 December 21
High-throughput screening of cell-secreted proteins is essential for various biotechnological applications. In this article, we show a microfluidic approach to perform the analysis of cell-secreted proteins in nanoliter droplet arrays by two complementary methods, fluorescence microscopy and mass spectrometry. We analyzed the secretion of the enzyme phytase, a phosphatase used as an animal feed additive, from a low number of yeast cells. Yeast cells were encapsulated in nanoliter volumes by droplet microfluidics and deposited on spatially-defined spots on the surface of a glass slide mounted on the motorized stage of an inverted fluorescence microscope. During the following incubation for several hours to produce phytase, the droplets can be monitored by optical microscopy. After addition of a fluorogenic substrate at a defined time, the relative concentration of phytase was determined in every droplet. Moreover, we demonstrate the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to monitor the multi-step conversion of the native substrate phytic acid by phytase secreted in 7 nL droplets containing 50-100 cells. Our method can be adapted to various other protocols. As the droplets are easily accessible, compounds such as assay reagents or matrix molecules can be added to all or to selected droplets only, or part of the droplet volume could be removed. Hence, this platform is a versatile tool for questions related to cell secretome analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app