Add like
Add dislike
Add to saved papers

A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images.

In this paper, a hierarchical image matting model is proposed to extract blood vessels from fundus images. More specifically, a hierarchical strategy is integrated into the image matting model for blood vessel segmentation. Normally the matting models require a user specified trimap, which separates the input image into three regions: the foreground, background and unknown regions. However, creating a user specified trimap is laborious for vessel segmentation tasks. In this paper, we propose a method that first generates trimap automatically by utilizing region features of blood vessels, then applies a hierarchical image matting model to extract the vessel pixels from the unknown regions. The proposed method has low calculation time and outperforms many other state-of-art supervised and unsupervised methods. It achieves a vessel segmentation accuracy of 96.0%, 95.7% and 95.1% in an average time of 10.72s, 15.74s and 50.71s on images from three publicly available fundus image datasets DRIVE, STARE, and CHASE DB1, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app