Add like
Add dislike
Add to saved papers

Synthesis, Molecular Modelling and Biological Studies of 3-hydroxy-pyrane-4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors.

Medicinal Chemistry 2018 December 19
BACKGROUND: Despite the progresses in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue.

OBJECTIVE: To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3-hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized.

METHOD: To provide a significant characterization of the novel compounds, an in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity.

RESULTS: Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture.

CONCLUSION: Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app