Add like
Add dislike
Add to saved papers

Application of Different methods for Reducing Radiation Dose to Breast during MDCT.

The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be taken to reduce radiation dose to the breast. The aim of this review is to introduce methods used for reducing radiation dose to breast in thoracic CT and review related performed studies. The literature indicates that bismuth shielding increases image noise and CT numbers as well as introducing streak artifacts. Tube current modulation (TCM) technique and iterative reconstruction algorithms can provide some levels of dose reduction to radiosensitive organs and superior image quality without the disadvantages of bismuth shielding. However, they are not available on all CT scanners, especially in low-income countries. Such centers may have to continue using bismuth shields to reduce the dose until these superior techniques become available at lower costs in all CT scanners. Furthermore, design and manufacture of new shields with the lower impact on image quality are desirable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app