Add like
Add dislike
Add to saved papers

Biocatalytic synthesis of diaryl disulphides and their bio-evaluation as potent inhibitors of drug-resistant Staphylococcus aureus.

Drug Development Research 2018 December 20
Staphylococcus aureus is a WHO Priority II pathogen for its capability to cause acute to chronic infections and to resist antibiotics, thus severely impacting healthcare systems worldwide. In this context, it is urgently desired to discover novel molecules to thwart the continuing emergence of antimicrobial resistance. Disulphide containing small molecules has gained prominence as antibacterials. As their conventional synthesis requires tedious synthetic procedure and sometimes toxic reagents, a green and environmentally benign protocol for their synthesis has been developed through which a series of molecules were obtained and evaluated for antibacterial activity against ESKAPE pathogen panel. The hit compound was tested for cytotoxicity against Vero cells to determine its selectivity index and time-kill kinetics was determined. The activity of hit was determined against a panel of S. aureus multi-drug resistant clinical isolates. Also, its ability to synergize with FDA approved drugs was tested as was its ability to reduce biofilm. We identified bis(2-bromophenyl) disulphide (2t) as possessing equipotent antimicrobial activity against S. aureus including MRSA and VRSA strains. Further, 2t exhibited a selectivity index of 25 with concentration-dependent bactericidal activity, synergized with all drugs tested and significantly reduced preformed biofilm. Taken together, 2t exhibits all properties to be positioned as novel scaffold for anti-staphylococcal therapy. Hit, Lead & Candidate Discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app