Add like
Add dislike
Add to saved papers

Failure modes analysis of electrofluidic display under thermal ageing.

Dielectric failure as well as optical switching failure in electrofluidic display (EFD) are still a bottleneck for sufficient device lifetime. In this study, a dielectric redundancy-designed multilayer insulator of ParyleneC/AF1600X was applied in an EFD device. The reliability performance was systematically studied by tracking the applied voltage-dependent leakage current and capacitance changes (I-V and C-V curves) with thermal ageing time. The multilayer insulator shows a more stable performance in leakage current compared to a single-layer insulator. The failure modes during operation underlying the single-layer and the multilayer dielectric appear to be different as exemplified by microscopic images. The single-layer AFX shows significant detachment. In addition, by quantitatively analysing the C-V curves with ageing time, we find that for the single AFX device, the dominant failure mode is 'no-opening' of the pixels. For the multilayer device, the dominant failure mode is 'no-closing' of the pixels. This study provides tools for distinguishing the basic failure modes of an EFD device and demonstrates a quantitative method for evaluating the reliability performance of the device under thermal ageing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app