Add like
Add dislike
Add to saved papers

Strong intramolecular hydrogen bonding in protonated β-methylaminoalanine: A vibrational spectroscopic and computational study.

The gas-phase structure of protonated β-methylaminoalanine was investigated using infrared multiple photon dissociation spectroscopy in the C-H, N-H, O-H stretching region (2700-3800 cm-1 ) and the fingerprint region (1000-1900 cm-1 ). Calculations using density functional theory methods show that the lowest energy structures prefer protonation of the secondary amine. Formation of hydrogen bonds between the primary and secondary amine, and the secondary amine and carboxylic oxygen further stabilize the lowest energy structure. The infrared spectrum of the lowest energy structure originating with harmonic density functional theory has features that generally match the positions of the experimental spectra; however, the overall agreement with the experimental spectrum is poor. Molecular dynamics calculations were used to generate a gas-phase infrared spectrum. With these calculations a reasonable match with the experimental spectrum, especially in the high-energy region, was obtained. The results of the molecular dynamics simulation support the density functional theory calculations, with protonation of the secondary amine and the formation of a hydrogen bond between the protonated secondary amine and the primary amine. This work shows the importance of accounting for anharmonic effects in systems with very strong intramolecular hydrogen bonding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app