Add like
Add dislike
Add to saved papers

Activation of AMP-Activated Protein Kinase by A769662 Ameliorates Sepsis-Induced Acute Lung Injury in Adult Mice.

Shock 2018 December 14
A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 hrs after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared to control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKβ1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKβ1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared to vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app