Add like
Add dislike
Add to saved papers

G-alpha subunit abundance and activity differentially regulate β-catenin signalling.

Heterotrimeric G-proteins are signal transduction proteins involved in regulating numerous signaling events. In particular, previous studies have demonstrated a role for G-proteins in regulating β-catenin signaling. However, the link between G-proteins and β-catenin signaling is controversial and appears to depend on G-protein specificity. We describe a detailed analysis of a link between specific G-alpha subunits and β-catenin using G-alpha subunit genetic knockout and knockdown approaches. The Pasteurella multocida toxin was utilized as a unique tool to activate G-proteins, with LiCl treatment serving as a β-catenin signaling agonist. The results show that PMT significantly enhanced LiCl-induced active β-catenin levels in HEK293T cells and mouse embryo fibroblasts. Evaluation of the effect of specific G-alpha proteins on the regulation of β-catenin showed that Gq/11 and G12/13 knockout cells had significantly higher levels of active and total β-catenin compared to wild-type cells. The stimulation of active β-catenin by PMT and LiCl was lost upon both constitutive and transient knockdown of G12 and G13 , but not Gq Based on our results, we conclude that endogenous G-alpha proteins are negative regulators of active β-catenin; however, PMT activated G-alpha subunits positively regulates LiCl-induced β-catenin expression, in a G12/13 -dependent manner. Hence G-alpha subunit regulation of β-catenin is context-dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app