Add like
Add dislike
Add to saved papers

Structure-property relationships for wet dentin adhesive polymers.

Biointerphases 2018 December 18
Dentin adhesive systems for composite tooth restorations are composed of hydrophilic/hydrophobic monomers, solvents, and photoinitiators. The adhesives undergo phase separation and concomitant compositional change during their application in the wet oral environment; phase separation compromises the quality of the hybrid layer in the adhesive/dentin interface. In this work, the adhesive composition in the hybrid layer can be represented using the phase boundaries of a ternary phase diagram for the hydrophobic monomer/hydrophilic monomer/water system. The polymer phases, previously unaccounted for, play an important role in determining the mechanical behavior of the bulk adhesive, and the chemomechanical properties of the phases are intimately related to the effects produced by differences in the hydrophobic-hydrophilic composition. As the composition of the polymer phases varies from hydrophobic-rich to hydrophilic-rich, the amount of the adsorbed water and the nature of polymer-water interaction vary nonlinearly and strongly correlate with the change in elastic moduli under wet conditions. The failure strain, loss modulus, and glass transition temperature vary nonmonotonically with composition and are explained based upon primary and secondary transitions observed in dynamic mechanical testing. Due to the variability in composition, the assignment of mechanical properties and the choice of suitable constitutive models for polymer phases in the hybrid layer are not straightforward. This work investigates the relationship between composition and chemomechanical properties of the polymer phases formed on the water-adhesive phase boundary using quasistatic and dynamic mechanical testing, mass transfer experiments, and vibrational spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app