Add like
Add dislike
Add to saved papers

Nonparametric Maximum Likelihood Estimators of Time-Dependent Accuracy Measures for Survival Outcome Under Two-Stage Sampling Designs.

Large prospective cohort studies of rare chronic diseases require thoughtful planning of study designs, especially for biomarker studies when measurements are based on stored tissue or blood specimens. Two-phase designs, including nested case-control (Thomas, 1977) and case-cohort (Prentice, 1986) sampling designs, provide cost-effective strategies for conducting biomarker evaluation studies. Existing literature for biomarker assessment under two-phase designs largely focuses on simple inverse probability weighting (IPW) estimators (Cai and Zheng, 2011; Liu et al., 2012). Drawing on recent theoretical development on the maximum likelihood estimators for relative risk parameters in two-phase studies (Scheike and Martinussen, 2004; Zeng et al., 2006), we propose nonparametric maximum likelihood based estimators to evaluate the accuracy and predictiveness of a risk prediction biomarker under both types of two-phase designs. In addition, hybrid estimators that combine IPW estimators and maximum likelihood estimation procedure are proposed to improve efficiency and alleviate computational burden. We derive large sample properties of proposed estimators and evaluate their finite sample performance using numerical studies. We illustrate new procedures using a two-phase biomarker study aiming to evaluate the accuracy of a novel biomarker, des- γ -carboxy prothrombin, for early detection of hepatocellular carcinoma (Lok et al., 2010).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app