Add like
Add dislike
Add to saved papers

Transport of oxygen into granitic rocks: Role of physical and mineralogical heterogeneity.

The rock matrix of granites is expected to be an important buffer against the dispersion of contaminants, e.g. radionuclides, and against the ingress of oxygenated glacial meltwater. The influence of matrix heterogeneity on O2 diffusive transport is assessed here by means of numerical experiments based on a micro-Discrete Fracture Network (micro-DFN) representation of the diffusion-available pore space along with random realisations of idealized biotite grains, to simulate the heterogeneous nature of granitic rocks. A homogeneous-based analytical solution is also presented and used to assess possible deviations of the numerical experiments from the assumption of homogeneity. The analytical solution is also used to test upscaled values of mineral surface area. The numerical experiments show that the matrix behaves as a composite system, with the coexistence of fast and slow diffusive pathways. This behavior is more evident at low Damköhler numbers. Our interpretation of the numerical experiments points out the importance to properly characterise the heterogeneity of the rock matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app