Add like
Add dislike
Add to saved papers

Δ 9 -Tetrahydrocannabinol upregulates fatty acid 2-hydroxylase (FA2H) via PPARα induction: A possible evidence for the cancellation of PPARβ/δ-mediated inhibition of PPARα in MDA-MB-231 cells.

Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear transcription factors, with three characterized subtypes: PPARα, PPARβ/δ, and PPARγ. The biological correlation between the two PPAR subtypes PPARα and γ and carcinogenesis is well-characterized; however, substantially less is known about the biological functions of PPARβ/δ. PPARβ/δ has been reported to repress transcription when PPARβ/δ and PPARα or PPARγ are simultaneously expressed in some cells, and MDA-MB-231 cells express functional levels of PPARβ/δ. We have previously reported that Δ9 -tetrahydrocannabinol (Δ9 -THC), a major cannabinoid component of the drug-type cannabis plant, can stimulate the expression of fatty acid 2-hydroxylase (FA2H) via upregulation of PPARα expression in human breast cancer MDA-MB-231 cells. Although the possibility of an inhibitory interaction between PPARα and PPARβ/δ has not been demonstrated in MDA-MB-231 cells, we reasoned if this interaction were to exist, Δ9 -THC should make PPARα free to achieve FA2H induction. Here, we show that a PPARβ/δ-mediated suppression of PPARα function, but not of PPARγ, exists in MDA-MB-231 cells and Δ9 -THC causes FA2H induction via mechanisms underlying the cancellation of PPARβ/δ-mediated inhibition of PPARα, in addition to the upregulation of PPARα.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app