Add like
Add dislike
Add to saved papers

Immune response in the relapsing-remitting experimental autoimmune encephalomyelitis in mice: The role of the NF-κB signaling pathway.

Cellular Immunology 2018 December 9
Characteristics of the mouse model of relapsing-remitting experimental autoimmune encephalomyelitis (rEAE) closely resemble manifestations of multiple sclerosis in humans. In the present study, we investigated the mechanisms of inflammatory response, focusing on NF-κB pathway activation. Cytokine response in rEAE mice was multiphasic: the early phase was characterized by the increase in interferon-γ level in plasma. In the later stage, the level of interleukin-17, but not of interferon-γ, was increased. The early phase of rEAE was also accompanied by increased RelA/p65 phosphorylation at Ser276 in spleen cells, whereas the rEAE maintenance phase was characterized by RelA/p65 phosphorylation at Ser536 and IKK phosphorylation. The IKKα/β inhibitor reduced interleukin-17 and interferon-γ levels in plasma and alleviated rEAE symptoms. The IKKα/β inhibitor decreased IKK and p65(Ser536) phosphorylation, but doubled p65(Ser276) phosphorylation in rEAE mice. The increased RelA/p65(Ser276) phosphorylation coincided in time with the production of interferon-γ, Hsp72, and the early phase of IL-17 generation, whereas increased RelA/p65(Ser536) phosphorylation coincided with the activation of IKK, SAPK/JNK, and p53, as well as the late phase of IL-17 production, indicating the role of the RelA/p65 phosphorylation events in the induction and maintenance of rEAE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app