Add like
Add dislike
Add to saved papers

Metformin inhibits estradiol and progesterone-induced decidualization of endometrial stromal cells by regulating expression of progesterone receptor, cytokines and matrix metalloproteinases.

BACKGROUND: Polycystic ovary syndrome (PCOS) is a serious threat for reproductive-aged women. Metformin has been used for the treatment of PCOS. However, its molecular mechanism in decidualization process of PCOS has not been well featured.

METHODS: RT-qPCR analysis was used to detect expression patterns of progesterone receptor (PGR), estradiol receptor alpha (ERα), Cytokeratin 8 and Vimentin in endometrial tissues of PCOS and non-PCOS patients. RT-qPCR assay was also employed to determine mRNA expression of prolactin, Insulin-like growth factor-binding protein 1 (IGFBP-1), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP9). Cytokine secretion were measured by matching ELISA kits. Protein expression of p-ERK1/2, ERK1/2, p-p38 MAPK, p38 MAPK, and PGR (PGRA and PGRB) was tested by western blot assay.

RESULTS: PGR expression was upregulated in PCOS patients. Metformin alleviated estradiol (E2) and progesterone (P4) (EP)-induced decidualization of endometrial stromal cells. Abnormal cytokine secretion was observed in EP-stimulated endometrial stromal cells in the absence or presence of metfromin. Metformin suppressed EP-induced MMP-2 and MMP-9 upregulation. Metformin alleviated EP-triggered p38 MAPK inactivation and PGR (PGRA and PGRB) expression. Metfromin had no effect on ERK1/2 signaling in EP-stimulated endometrial stromal cells.

CONCLUSION: Metformin alleviated EP-induced decidualization of endometrial stromal cells by modulating secretion of multiple cytokines, inhibiting expression of MMP-2 and MMP-9, activating p38-MAPK signaling and reducing PGR expression, providing a deep insight into the molecular basis of metfromin therapy for PCOS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app