Add like
Add dislike
Add to saved papers

MiR-23a-3p acts as an oncogene and potential prognostic biomarker by targeting PNRC2 in RCC.

BACKGROUND: Renal cell carcinoma (RCC) is a most common kidney malignancy, with atypical symptoms in the early stage and poor outcome in the late stage. Recently, emerging evidence revealed that some miRNAs play an essential role in the tumorigenesis and progression of RCC. Therefore, the aim of this study is that understand the detailed molecular mechanism of miR-23a-3p in RCC and identify its potential clinical value.

METHODS: In this study, RT-qPCR, wound scratch assay, cell proliferation assay, transwell assay and flow cytometry assay were performed to detect miR-23a-3p expression and its proliferation, migration and apoptosis in RCC. The bioinformatics analysis, RT-qPCR, western blot and luciferase reporter assay were performed to discern and examine the relationship between miR-23a-3p and its potential targets. Moreover, we analyzed the relationship between miR-23a-3p expression and clinicopathological variables or overall survival (OS) from 118 formalin-fixed paraffin-embedded RCC samples.

RESULTS: miR-23a-3p is significantly up-regulated in RCC tissue samples, RCC cell lines and the TCGA database. Upregulating miR-23a-3p enhances, while silencing miR-23a-3p suppresses cell viability, proliferation and mobility in ACHN and 786-O cell lines. Besides, overexpression of miR-23a-3p inhibits the cell apoptosis. Then our study further reveals that miR-23a-3p regulates tumorigenesis by targeting Proline-Rich Nuclear Receptor Coactivator 2 (PNRC2). Also, the cox proportional hazard regression analysis indicates that low expression of miR-23a-3p patients has a remarkable longer OS.

CONCLUSIONS: Our results reveals that miR-23a-3p may not only serve as a new biomarker for prognosis but also serve as a new therapeutic strategy in the RCC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app