JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Advances and opportunities for the design of self-sufficient and spatially organized cell-free biocatalytic systems.

During the past decades, biocatalysis has made important contributions to chemical manufacturing by using both whole-cell and cell-free biotransformation reactions. More recently, multi-enzyme systems that can run step-wise reactions in one-pot with high selectivity are increasingly being developed. The use of multiple isolated enzymes to perform a series of reactions offers operational and process advantages over the use of living or resting cells, but such cell free processes need to be optimized to meet industrial productivity and titer requirements. Major advances have been made in enzyme discovery and engineering in order to access new activities and increase catalytic efficiency and stability. Yet, the efficient operation of multiple enzymatic reactions simultaneously requires new approaches for optimization. Inspired by the spatial organization of metabolic networks in cells, researchers have recently begun to exploit these mechanisms to increase the efficiency of multi-enzyme systems. This review highlights recent examples that adopt cellular enzyme co-localization mechanisms for multi-enzyme biocatalysis, which include enzyme attachment to preformed surfaces, enzyme clustering and enzyme encapsulation. Co-immobilization of multiple enzymes is achieved by merging tools from protein engineering and synthetic biology with approaches from material sciences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app