Add like
Add dislike
Add to saved papers

Detection of Mg 2+ -dependent, coaxial stacking rearrangements in a bulged three-way DNA junction by single-molecule FRET.

Biophysical Chemistry 2018 December 6
Three-way helical junctions (3WJs) arise in genetic processing, and they have architectural and functional roles in structured nucleic acids. An internal bulge at the junction core allows the helical domains to become oriented into two possible, coaxially stacked conformers. Here, the helical stacking arrangements for a series of bulged, DNA 3WJs were examined using ensemble fluorescence resonance energy transfer (FRET) and single-molecule FRET (smFRET) approaches. The 3WJs varied according to the GC content and sequence of the junction core as well as the pyrimidine content of the internal bulge. Mg2+ titration experiments by ensemble FRET show that both stacking conformations have similar Mg2+ requirements for folding. Strikingly, smFRET experiments reveal that a specific junction sequence can populate both conformers and that this junction undergoes continual interconversion between the two stacked conformers. These findings will support the development of folding principles for the rational design of functional DNA nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app