Add like
Add dislike
Add to saved papers

A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials.

Advanced Materials 2018 December 15
The electrochemical carbon dioxide reduction reaction (CO2 RR) presents a viable approach to recycle CO2 gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high-yield synthesis of unique star decahedron Cu nanoparticles (SD-Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH4 ) and high efficiency for ethylene (C2 H4 ) production, is reported. Particularly, SD-Cu NPs show an onset potential for CH4 production lower by 0.149 V than commercial Cu NPs. More impressively, SD-Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C2 H4 production at -0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO2 RR performance on SD-Cu NPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app