Add like
Add dislike
Add to saved papers

Anti-psoriatic effect of myeloid-derived suppressor cells on imiquimod-induced skin inflammation in mice.

Myeloid-derived suppressor cells (MDSCs) play an important role in controlling the immune response against cancer and in suppression of autoimmunity and allergic inflammation. However, the beneficial effects of MDSCs on the experimental mouse model of psoriasis have not been reported. Therefore, we investigated the anti-psoriatic effect of MDSCs on IMQ-induced skin inflammation in mice and explored the mechanisms involved. Our results showed that administration of MDSCs (1 × 106 or 2 × 106  cells) suppressed the development of IMQ-induced skin inflammation in mice as exemplified by a significant reduction in clinical severity scores and was associated with a reduction of histopathological changes, including inflammatory infiltration, epidermal hyperplasia and hyperkeratosis. The immunosuppressive effect of MDSCs (1 × 106 or 2 × 106  cells) corresponded to the production of Th1 cytokines (TNF-α, IFN-γ) and Th17 cytokines (IL-17A and IL-23) in the serum and dorsal skin. Administration of MDSCs (1 × 106 or 2 × 106  cells) also inhibited splenomegaly. Moreover, an increased percentage of CD4+ CD25+ FoxP3+ regulatory T (Treg) cells and decreased percentage of Th1 and Th17 cells were found in mice treated with MDSCs. Taken together, these results imply that MDSCs have immunomodulatory and immunosuppressive effects on disease progression in a murine model of psoriasis and that MDSCs could be used in preventive or therapeutic strategies for the management of autoimmune inflammatory skin disorders, such as psoriasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app