Add like
Add dislike
Add to saved papers

Salidroside protected against MPP + -induced Parkinson's disease in PC12 cells by inhibiting inflammation, oxidative stress and cell apoptosis.

The present study aimed to investigate the protective effects of salidroside (SAL) on 1-methyl-4-phenylpyridinium (MPP+ )-induced PC12 cell model for Parkinson's disease. PC12 cells were pretreated with SAL in different concentration and then exposed to MPP+ . To evaluate the effects of SAL on cytotoxicity, the survival rate was tested by MTT asssay and the apoptosis was tested via flow cytometry and western blot. ROS, GSH and MDA were detected to analysis the effects of SAL on oxidative stress. The mRNA and protein levels of inflammatory factors TNF-α and IL-1β were also determined by RT-qPCR and western blot. Pretreatment with SAL effectively relieved the MPP+ cytotoxic effects and decreased the release of ROS production and inflammatory cytokines. SAL also inhibited apoptosis, suppressed MDA activity and increased GSH levels in MPP+ -treated PC12 cells. Moreover, the expression levels of caspase-9, caspase-3 and Bax were significantly decreased in the SAL treatment groups compared with the MPP+ group, whereas Bcl-2 expression was significantly increased in the SAL treatment groups. In summary, the overall results suggested that SAL have neuroprotective effects on MPP+ -induced PC12 cell model by inhibiting inflammation, oxidative stress and cell apoptosis. SAL may be a potential active product to protect against Parkinson's disease. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app