Add like
Add dislike
Add to saved papers

Impaired intermediate formation in mouse embryos expressing reduced levels of Tbx6.

Intermediate mesoderm (IM) is the strip of tissue lying between the paraxial mesoderm (PAM) and the lateral plate mesoderm that gives rise to the kidneys and gonads. Chick fate mapping studies suggest that IM is specified shortly after cells leave the primitive streak and that these cells do not require external signals to express IM-specific genes (James and Schultheiss, 2003). Surgical manipulations of the chick embryo, however, revealed that PAM-specific signals are required for IM differentiation into pronephros - the first kidney (Mauch et al., 2000). Here, we use a genetic approach in mice to examine the dependency of IM on proper PAM formation. In Tbx6 null mutant embryos, which form 7-9 improperly patterned anterior somites, IM formation is severely compromised, while in Tbx6 hypomorphic embryos, where somites form but are improperly patterned along the axis, the impact to IM formation is lessened. These results suggest that IM and its derivatives, the kidneys and the gonads, are directly or indirectly dependent on proper PAM formation. This has implications for humans harboring Tbx6 mutations which are known to have somite-derived defects including congenital scoliosis (Sparrow et al., 2013; Wu et al., 2015). This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app