Add like
Add dislike
Add to saved papers

Vector field analysis for surface registration in computer-assisted ENT-surgery.

BACKGROUND: Manual paired-point registration for navigated ENT-surgery is prone to human errors; automatic surface registration is often caught in local minima.

METHODS: Anatomical features of the human occiput are integrated into an algorithm for surface registration. A vector force field is defined between the patient and operating room datasets; registration is facilitated through gradient-based vector field analysis optimization of an energy function. The method is validated exemplarily on patient surface data provided by a mechanically positioned A-mode ultrasound sensor.

RESULTS: Successful registrations were achieved within the entire parameter space, as well as from positions of local minima that were found by the Gaussian fields algorithm for surface registration. Sub-millimetric registration error was measured in clinically relevant anatomical areas on the anterior skull and within the generally accepted margin of 1.5 mm for the entire head.

CONCLUSION: The satisfactory behavior of this approach potentially suggests a wider clinical integration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app