Add like
Add dislike
Add to saved papers

Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations.

Mitochondria hold a critical role in cell metabolism and homeostasis. Mitochondrial injury plays central part in deciding cell fate especially in programmed cell death pathways. Various nanomaterials lead to different cell death modalities by inducing mitochondrial injury. Mitochondrial injury is manifested as multiple biochemical events ranging from altered energy production, mitochondrial outer membrane permeability, release of pro-apoptotic BCl-2 family proteins, loss of mitochondrial inner membrane potential, mitochondrial swelling, and disruption of mitochondrial structure leading to eventual lysis of mitochondria. Mitochondrial membrane permeability (loss of mitochondrial membrane potential) is a critical event in deciding cell fate. This chapter presents an overview of nanomaterial-induced loss of mitochondrial membrane potential and discusses potential nano-specific artifacts in these assays. Finally, a detailed methodology to accurately quantify and validate the loss of mitochondrial membrane potential after nanomaterial exposures is presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app