Add like
Add dislike
Add to saved papers

The osteoarthritis-associated gene PAPSS2 promotes differentiation and matrix formation in ATDC5 chondrogenic cells.

3'-Phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2) has been shown to be important in the development of normal skeletal structure. The aim of the present study was to evaluate the role of PAPSS2 in the differentiation of chondrocytes as well as their mechanisms. Using RNA interference-mediated via a lentivirus and a retrovirus, PAPSS2 gene silence and overexpression in ATDC5 chondrogenic cells were performed. Chondrocyte differentiation and chondrogenic-related gene markers associated with extracellular matrix formation were noted. The mRNA and protein expression for Wnt4, β-catenin and SOX9 genes were observed. The PAPSS2 transcript expression levels progressively decline in ATDC5-induced chondrocyte-like cells during differentiation. Silencing of PAPSS2 expression had a significantly attenuating effect on cell differentiation and decreased expression of collagen II and X. In contrast, over-expression of PAPSS2 promoted the differentiation of ATDC5 chondrogenic cells. The mRNA expression levels of Wnt4 and SOX9 decreased significantly in PAPSS2 knock down cells vs. control cells. However, this expression was increased in the cells over-expressing PAPSS2. These data indicate that PAPSS2 regulates aggrecan activity as well as cell differentiation. The findings favor a mechanism by which PAPSS2 induces differentiation in ATDC5 cells via direct regulation of early signaling events that promote formation of collagenous matrix components. This control is probably mediated via extracellular matrix formation Wnt/β-catenin signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app