Add like
Add dislike
Add to saved papers

Peptide-Templated Gold Clusters as Enzyme-Like Catalyst Boost Intracellular Oxidative Pressure and Induce Tumor-Specific Cell Apoptosis.

Nanomaterials 2018 December 13
Anticancer metallodrugs that aim to physiological characters unique to tumor microenvironment are expected to combat drug tolerance and side-effects. Recently, owing to the fact that reactive oxygen species' is closely related to the development of tumors, people are committed to developing metallodrugs with the capacity of improving the level of reactive oxygen species level toinduce oxidative stress in cancer cells. Herein, we demonstrated that peptide templated gold clusters with atomic precision preferably catalyze the transformation of hydrogen peroxide into superoxide anion in oxidative pressure-type tumor cells. Firstly, we successfully constructed gold clusters by rationally designing peptide sequences which targets integrin αν β₃ overexpressed on glioblastoma cells. The superoxide anion, radical derived from hydrogen peroxide and catalyzed by gold clusters, was confirmed in vitro under pseudo-physiological conditions. Then, kinetic parameters were evaluated to verify the catalytic properties of gold clusters. Furthermore, these peptide decorated clusters can serve as special enzyme-like catalyst to convert endogenous hydrogen peroxide into superoxide anion, elevated intracellular reactive oxygen species levels, lower mitochondrial membrane potential, damage biomacromolecules, and trigger tumor cell apoptosis consequently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app