Add like
Add dislike
Add to saved papers

Efficient Matrix-Based Channel Hopping Schemes for Blind Rendezvous in Distributed Cognitive Radio Networks.

Sensors 2018 December 11
Channel rendezvous is an initial and important process for establishing communications between secondary users (SUs) in distributed cognitive radio networks. Due to the drawbacks of the common control channel (CCC) based rendezvous approach, channel hopping (CH) has attracted a lot of research interests for achieving blind rendezvous. To ensure rendezvous within a finite time, most of the existing CH-based rendezvous schemes generate their CH sequences based on the whole global channel set in the network. However, due to the spatial and temporal variations in channel availabilities as well as the limitation of SUs sensing capabilities, the local available channel set (ACS) for each SU is usually a small subset of the global set. Therefore, following these global-based generated CH sequences can result in extensively long time-to-rendezvous (TTR) especially when the number of unavailable channels is large. In this paper, we propose two matrix-based CH rendezvous schemes in which the CH sequences are generated based on the ACSs only. We prove the guaranteed and full diversity rendezvous of the proposed schemes by deriving the theoretical upper bounds of their maximum TTRs. Furthermore, extensive simulation comparisons with other existing works are conducted which illustrate the superior performance of our schemes in terms of the TTR metrics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app