Add like
Add dislike
Add to saved papers

A remarkable thermosensitive hydrogel cross-linked by two inorganic nanoparticles with opposite charges.

Herein, we report the successful synthesis of a series of poly (N-isopropylacrylamide) (PNIPA)/layered double hydroxides (LDHs)/nano-hydroxyapatite (nano-HA) hydrogels via in-situ radical polymerization. The internal morphology, thermo sensitivity, rheological properties, swelling behavior and hemocompatibility of the PNIPA/LDHs/HA composite hydrogels were systematically investigated. Results show that the hydrogels had a reversible sol-gel transformation around 33 °C. Interactions between the positively charged LDHs and negatively charged nano-HA particles created a highly porous hydrogel network. The composite hydrogels exhibited excellent hemocompatibility, incredible mechanical toughness and reversible swelling/deswelling behavior. To our knowledge, this is the first reported study to use two types of inorganic nanoparticle with opposing charges as hydrogel crosslinking agents. Based on its properties, we expect this hydrogel has broad applications potential in tissue engineering, drug delivery and biosensor development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app