Add like
Add dislike
Add to saved papers

Response of bloom-forming cyanobacterium Microcystis aeruginosa to 17β-estradiol at different nitrogen levels.

Chemosphere 2018 December 2
Co-existence of cyanobacterial harmful algal blooms (CyanoHABs) and steroid estrogens (SEs) has been an increasing concern in eutrophic waters. The cellular responses and biodegradation of 17β-estradiol (E2) in cyanobacterium Microcystis aeruginosa were investigated at different nitrogen levels. During the 10-d experiment, the growth of M. aeruginosa was stimulated by 10-100 μg L-1 of E2 at the lowest nitrogen level of 0.5 mg L-1 , whereas the presence of E2 inhibited the cyanobacterial growth at 5 mg L-1 of nitrogen. With nitrogen concentration increased to 50 mg L-1 , the impact of E2 on levels of growth rate and chlorophyll a (Chla) alleviated. Exposure to E2 also promoted the superoxide dismutase activity of M. aeruginosa, coupled with cellular oxidative damage as indicated by the increasing malondialdehyde content. A sufficient nitrogen supply mitigated the oxidative stress of E2 through enhancing the synthesis of detoxification-related enzymes. Simultaneously, the secretion of tryptophan-like substances in loosely- and tightly-bound extracellular polymeric substances was triggered for adapting to an E2 addition in the short term. Moreover, significant biodegradation of E2 was observed, and the process followed a first-order kinetic reaction. The obtained half-lives decreased with nitrogen levels and ranged from 2.47 to 2.81 and 3.39-5.04 d, respectively, at 10 and 100 μg L-1 of E2. These results provide a better understanding of the potential effects of SEs on CyanoHABs formation, as well as the important role of CyanoHABs on SEs removal in aquatic ecosystems, which should be fully considered in the control of combined pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app