Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Poly(ADP-ribosyl)ation of OVOL2 regulates aneuploidy and cell death in cancer cells.

Oncogene 2019 April
Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification by which poly ADP-ribose (PAR) polymers are covalently added to proteins through a PAR polymerase (PARP). Here, using proteomic approach, we identify the transcriptional regulator, OVOL2, is a novel substrate of PARP1 and can be PARylated at residues Lysine 145, Lysine 176, and Lysine 212 within its C2H2 zinc finger domains. Overexpression of PARylated OVOL2 alters cell morphology and induces lagging chromosomes and aneuploidy. To define the underlying molecular mechanism by which OVOL2 induces abnormal cell cycle and centrosome amplification, we uncover that the OVOL2 elevates the protein levels of Cyclin E by enhancing its stability. Furthermore, we identify Skp2, the E3 ubiquitin ligase of Cyclin E, as a direct target of PARylated OVOL2. Using ChIP assay, the OVOL2 binding site on the promoter region of Skp2 is mapped. To further explore the physiological effect, we show that PARylated OVOL2 can induce cell death. Furthermore, to investigate PARylated OVOL2 function in vivo, we further develop a null-mice xenograft model and generate MMTV-PyVT transgenic mice and monitor the effect of wild-type OVOL2 and non-PARylated OVOL2-3K/A mutants on tumor progression. Consistently, overexpression of wild-type OVOL2 in both null-mice xenograft and MMTV-PyVT transgenic mice displays significantly reduction of tumor progression, respectively, further indicating that the function of OVOL2 as a tumor suppressor in vivo is highly regulated by PARylation. Taken together, our study sheds new light on PARP1-induced PARylation as a critical event in the OVOL2-mediated regulation of chromosomal integrity and suppression of cancer cells growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app