JOURNAL ARTICLE
OBSERVATIONAL STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Use of tracheal ultrasound combined with clinical parameters to select left double-lumen tube size: A prospective observational study.
European Journal of Anaesthesiology 2019 March
BACKGROUND: Left double-lumen tubes (LDLTs) are used in thoracic surgery to allow one-lung ventilation. Their size is usually chosen on the basis of clinical parameters (height, sex). Double-lumen endobronchial tubes are frequently undersized/oversized, risking tube displacement or tracheal trauma. A correlation between ultrasound tracheal diameter and left main bronchus dimension has been demonstrated.
OBJECTIVES: We hypothesised that the insertion of undersized/oversized double-lumen tubes is frequent when the size is selected using standard criteria, and that the use of ultrasound to estimate tracheal diameter may help to reduce the frequency of insertion of oversized tubes.
DESIGN: Two-step prospective observational study.
SETTING: The operating room of a French University hospital from January 2016 to February 2017.
PATIENTS: We enrolled 102 and 50 consecutive patients undergoing elective thoracic surgery in Steps 1 and 2 (males 63.7 and 60.0%, age 63 (13) and 63 (11) years, height 170 (13) and 169 (9) cm, respectively).
INTERVENTION: In Step 1, the size of the LDLT inserted was selected on the basis of clinical parameters. Ultrasound data about tracheal diameter were collected to determine cut-off points associating height and tracheal diameter. Cut-off values for ultrasound tracheal diameter were applied retrospectively to test their capability to reduce the insertion rate of oversized tube. In Step 2, the LDLT size was chosen according to the determined combined cut-off values.
MAIN OUTCOME MEASURE: LDLT size was considered adequate if the bronchial cuff volume required for isolation of the lung (i.e. no difference between inspiratory and expiratory lung volumes) was 0.5 to 2.5 ml of air; undersized and oversized tubes required more than 2.5 ml and less than 0.5 ml, respectively.
RESULTS: In Step 1, LDLT size was appropriate/undersized/oversized in 40 (39.2%)/23 (22.6%)/39 (38.6%) of patients. Cut-off values derived from ultrasound measurements would have reduced the use of oversized tubes by 20.6% (P < 0.001). In Step 2, the frequency of use of adequately sized tubes increased (86.0 vs. 39.2%, P < 0.001), and the frequency of insertion of oversized and undersized tubes decreased (6.0 vs. 38.2% and 8.0 vs. 22.6%, both P < 0.001).
CONCLUSION: Combining ultrasound measurement of tracheal diameter and clinical parameters improves the choice of LDLT size.
OBJECTIVES: We hypothesised that the insertion of undersized/oversized double-lumen tubes is frequent when the size is selected using standard criteria, and that the use of ultrasound to estimate tracheal diameter may help to reduce the frequency of insertion of oversized tubes.
DESIGN: Two-step prospective observational study.
SETTING: The operating room of a French University hospital from January 2016 to February 2017.
PATIENTS: We enrolled 102 and 50 consecutive patients undergoing elective thoracic surgery in Steps 1 and 2 (males 63.7 and 60.0%, age 63 (13) and 63 (11) years, height 170 (13) and 169 (9) cm, respectively).
INTERVENTION: In Step 1, the size of the LDLT inserted was selected on the basis of clinical parameters. Ultrasound data about tracheal diameter were collected to determine cut-off points associating height and tracheal diameter. Cut-off values for ultrasound tracheal diameter were applied retrospectively to test their capability to reduce the insertion rate of oversized tube. In Step 2, the LDLT size was chosen according to the determined combined cut-off values.
MAIN OUTCOME MEASURE: LDLT size was considered adequate if the bronchial cuff volume required for isolation of the lung (i.e. no difference between inspiratory and expiratory lung volumes) was 0.5 to 2.5 ml of air; undersized and oversized tubes required more than 2.5 ml and less than 0.5 ml, respectively.
RESULTS: In Step 1, LDLT size was appropriate/undersized/oversized in 40 (39.2%)/23 (22.6%)/39 (38.6%) of patients. Cut-off values derived from ultrasound measurements would have reduced the use of oversized tubes by 20.6% (P < 0.001). In Step 2, the frequency of use of adequately sized tubes increased (86.0 vs. 39.2%, P < 0.001), and the frequency of insertion of oversized and undersized tubes decreased (6.0 vs. 38.2% and 8.0 vs. 22.6%, both P < 0.001).
CONCLUSION: Combining ultrasound measurement of tracheal diameter and clinical parameters improves the choice of LDLT size.
Full text links
Trending Papers
Management of type 2 diabetes in the new era.Hormones : International Journal of Endocrinology and Metabolism 2023 September 14
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Pharmacological Treatments in Heart Failure With Mildly Reduced and Preserved Ejection Fraction: Systematic Review and Network Meta-Analysis.JACC. Heart Failure 2023 August 26
Hypertensive Heart Failure.Journal of Clinical Medicine 2023 August 3
SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain.Journal of Cardiovascular Development and Disease 2023 July 31
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app