Add like
Add dislike
Add to saved papers

Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered and filament plastic materials and related post-processes.

The aim of this study was to measure the concentrations of gaseous and particulate contaminants originated from additive manufacturing operations and post-processes in an occupational setting when plastics were used as feedstock materials. Secondary aims were to evaluate the concentration levels based on proposed exposure limits and target values and to propose means to reduce exposure to contaminants released in additive manufacturing processes. Volatile organic compounds were sampled with Tenax® TA adsorption tubes and analyzed with thermo desorption gas chromatography-mass spectrometry instrument. Carbonyl compounds were sampled with DNPH-Silica cartridges and analyzed with high-performance liquid chromatography device. Particles were measured with P-Trak instrument and indoor air quality was sampled with IAQ-Calc instrument. Dust mass concentrations were measured simultaneously with DustTrak DRX instrument and IOM-samplers. Particle concentrations were at highest (2070-81 890 #/cm3 mean) during manufacturing with methods where plastics were thermally processed. Total volatile organic compounds concentrations, in contrast, were low (113-317 µg/m3 mean) during manufacturing with such methods, and vat photopolymerization method. However, total volatile organic compounds concentrations of material jetting and multi jet fusion methods were higher (1114-2496 µg/m3 mean), perhaps because of material and binder spraying, where part of the spray can become aerosolized. Chemical treatment of manufactured objects was found to be a severe volatile organic compounds source as well. Formaldehyde was detected in low concentrations (3-40 µg/m3 ) in all methods except for material jetting method, in addition to several other carbonyl compounds. Notable dust concentrations (1.4-9.1 mg/m3 ) were detected only during post-processing of powder bed fusion and multi jet fusion manufactured objects. Indoor air quality parameters were not found to be notably impacted by manufacturing operations. Only low concentrations (below 2 ppm) of CO were detected during several manufacturing processes. All studied additive manufacturing operations emitted potentially harmful contaminants into their environments, which should be considered in occupational additive manufacturing and workplace design. According to the measured contaminant levels it is possible that adverse additive manufacturing related health effects may occur amongst exposed workers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app