Add like
Add dislike
Add to saved papers

NMR backbone and methyl resonance assignments of an inhibitory G-alpha subunit in complex with GDP.

G-proteins are essential switch points at the cell membrane that control downstream signaling by their ability to adopt an inactive, GDP-bound or an active, GTP-bound state. Among other exchange factors, G-protein coupled receptors (GPCRs) induce exchange of GDP to GTP and thus promote the active state of the G-protein. The nucleotide-binding α subunit of the G-protein undergoes major conformational changes upon nucleotide binding. Thus, an NMR analysis of the two distinct nucleotide-bound states is essential for a more detailed understanding of associated structural changes. Here, we provide an NMR backbone as well as methyl group resonance assignment of an inhibitory G-alpha subunit subtype 1 (Gαi,1 ) in the GDP-bound form and show that, in contrast to the GTP-bound form, large parts of the protein are mobile, presumably caused by a loose arrangement of the two subdomains in Gα that tightly interact with each other only in the GTP-bound state. As the GDP-bound form represents the GPCR-binding-competent state, the presented NMR data will be essential for further studies on G-protein-GPCR interactions and dynamics in solution for receptor systems that couple to G-proteins containing an inhibitory Gα,1 subunit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app