Add like
Add dislike
Add to saved papers

Impact of different approaches to calculation of treatment activities on achieved doses in radioiodine therapy of benign thyroid diseases.

EJNMMI Physics 2018 December 13
PURPOSE: Radioiodine has been used for the treatment of benign thyroid diseases for over 70 years. However, internationally, there is no common standard for pretherapeutic dosimetry to optimally define the individual therapy activity. Here, we analyze how absorbed tissue doses are influenced by different approaches to pretherapeutic activity calculation of varying complexity.

METHODS: Pretherapeutic determination of treatment activity was retrospectively recalculated in 666 patients who had undergone radioiodine therapy for benign thyroid diseases (Graves' disease, non-toxic goiter, and uni- and multinodular goiter). Approaches considering none, some, or all of a set of individual factors, including target volume, maximum radioiodine uptake, and effective half-life, were applied. Assuming individually stable radioiodine kinetics, which had been monitored twice a day under therapy, hypothetically achieved tissue doses based on hypothetically administered activities resulting from the different methods of activity calculation were compared to intended target doses.

RESULTS: The Marinelli formula yields the smallest deviations of hypothetically achieved doses from intended target doses. Approaches taking individual target volume into consideration perform better than fixed therapy activities, which lead to high variances in achieved doses and high deviations of hypothetically achieved doses from intended target doses.

CONCLUSION: Elaborate pretherapeutic dose planning, taking individual radioiodine uptake, half-life, and target volume into consideration, should be used whenever possible. The use of disease-specific fixed activities cannot be recommended. Deviations of achieved tissue doses from target doses can already be significantly lowered by application of volume-adapted treatment activities if more elaborate means are not available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app