Add like
Add dislike
Add to saved papers

Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device.

Analyst 2018 December 13
In this study, a new chip was designed for simultaneous extraction of acidic and basic drugs by a single chamber on-chip electromembrane extraction (CEME) followed by high performance liquid chromatography. Diclofenac (DIC) and nalmefene (NAL) were selected as acidic and basic model analytes, respectively. In this device, simultaneous extraction of the analytes was carried out using a single compartment. The chip was composed of three PMMA (polymethyl methacrylate) parts with sandwiched structures and carved spiral microfluidic channels in each part. The middle part was cut and an "M" pattern provided interfaces for contact between the sample solution flow and two porous polypropylene sheets on both sides. Two other parts had the same spiral channels dedicated to the corresponding acceptor phases of the acidic and basic analytes and were located at both sides. Each polypropylene sheet was impregnated with the appropriate organic solvent for the acidic and basic analytes. Two platinum electrodes connected to a power supply were mounted at the bottom of the acceptor channels. These electrodes provided the electrical fields across SLMs to extract the analytes from a single sample flow. When the extraction was completed, the acceptor solutions were collected, mixed, and then injected into the chromatographic system. The effective parameters on the extraction efficiency were investigated and optimized. Under the optimal conditions, the calibration curves were linear in the range of 9.0-500 μg L-1 for NAL and 11.0-500 μg L-1 for DIC with the coefficient of determination (R2) higher than 0.9913. The relative standard deviations (RSD%) based on five replicate measurements were less than 6.3%. LOD values were 4.0 and 3.0 μg L-1 for DIC and NAL, respectively. Finally, the method was successfully applied to determine DIC and NAL in the human urine samples and satisfactory results were obtained (recovery ≥90).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app