Add like
Add dislike
Add to saved papers

GAGA protein is required for multiple aspects of Drosophila oogenesis and female fertility.

Investigation of Drosophila oogenesis provides the opportunity to understand conservative genetic mechanisms underlying fertile female gamete development. In this work, we showed that the Drosophila DNA-binding protein GAGA factor (GAF) had a multifunctional role in oogenesis and it is involved in the regulation of this process genetic program. We studied the influence on Drosophila oogenesis of a number of mutations in the 5' region of the Trl gene that encodes GAF. We found that our originally generated Trl mutations lead to a decrease in transcriptional gene activity and levels of GAF expression in both germline and follicular cells. Cytological (fluorescence and electron microscopy analysis) showed that GAF loss resulted in multiple oogenesis defects. Mutations affected the actin cytoskeleton, leading to decrease of cytoplasmic filaments in nurse cells and basal actin in follicular cells. GAF depletion also leads to abnormal follicular cells migration, both border and centripetal. In addition, mutant ovaries demonstrated abnormalities in germ cells, including mitochondria, endoplasmic reticulum, karyosome organization, yolk granule formation and selective transport. Loss of GAF also promoted excessive cell death and egg chamber degradation. In sum, these defects caused very high or full female sterility. Since one of the main GAF activities is regulation of transcription, the complex phenotypes of the Trl mutants might be the consequence of its multiple target genes misexpression. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app