Add like
Add dislike
Add to saved papers

A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study.

PURPOSE: Effective treatment of patients with terminal heart failure and preserved ejection fraction (HFpEF) is an unmet medical need. The aim of this study was to investigate a novel valveless pulsatile pump as a therapeutic option for the HFpEF population through comprehensive in silico investigations.

METHODS: The pump was simulated in a numerical model of the cardiovascular system of four HFpEF phenotypes and compared to a typical case of heart failure with reduced ejection fraction (HFrEF). The proposed pump, which was modeled as being directly connected to the left ventricle, features a single valveless inlet and outlet cannula and is driven in co-pulsation with the left ventricle. We collected hemodynamics for two different pump volumes (30 and 60 mL).

RESULTS: In all HFpEF conditions, the 30 mL pump improved the cardiac output by approximately 1 L/min, increased the mean arterial pressure by > 11% and lowered the mean left atrial pressure by > 30%. With the larger (60 mL) stroke volume, these hemodynamic improvements were more pronounced. In the HFrEF condition however, these effects were three times less in magnitude.

CONCLUSIONS: In this simulation study, the valveless pulsatile device improves hemodynamics in HFpEF patients by increasing the total stroke volume. The hemodynamic benefits are achieved with a small device volume comparable to implantable rotary blood pumps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app