Add like
Add dislike
Add to saved papers

Desmogleins as signaling hubs regulating cell cohesion and tissue/organ function in skin and heart- EFEM lecture 2018.

Annals of Anatomy 2018 December 8
Cell-Cell contacts are crucial for intercellular cohesion and formation of endothelial and epithelial barriers. Desmosomes are the adhesive contacts providing mechanical strength to epithelial intercellular adhesion and therefore are most abundant in tissues subjected to high mechanical stress such as the epidermis and heart muscle. Desmogleins (Dsg) besides intercellular adhesion serve as signalling hubs regulating cell behaviour. In desmosomal diseases such as the autoimmune blistering skin disease pemphigus or arrhythmic cardiomyopathy (AC), which is caused by mutations of desmosomal components of cardiomyocyte intercalated discs, the adhesive and signalling functions of desmosomes are impaired. Therefore, our goal is to elucidate the mechanisms regulating adhesion of desmosomes in order to develop new strategies to treat desmosomal diseases. For pemphigus, we have provided evidence that intracellular signalling is required for loss of keratinocyte cohesion and have characterized a first disease-relevant adhesion receptor consisting of Dsg3 and p38MAPK. We propose that signalling patterns correlate with autoantibody profiles and thereby define the clinical phenotypes of pemphigus. Besides direct modulation of signalling pathways we have demonstrated that peptide-mediated crosslinking of Dsg molecules can abolish skin blistering in vivo. A similar approach may be effective to stabilize adhesion in cardiomyocytes of AC hearts. Since we observed that the adrenergic β1-receptor is localized at intercalated discs we evaluate signalling pathways regulating cardiomyocyte cohesion. With adrenergic signalling we have reported a first mechanism to stabilize desmosomal adhesion in intercalated discs and proposed a new function of the sympathicus in the heart we refer to as positive adhesiotropy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app