Add like
Add dislike
Add to saved papers

Parecoxib, a selective blocker of cyclooxygenase-2, directly inhibits neuronal delayed-rectifier K + current, M-type K + current and Na + current.

Parecoxib, a prodrug of valdecoxib, is a selective inhibitor of cyclooxygenase-2 and widely used for traumatic and postoperative patients to avoid opioid-induced side effects. It is a potent analgesic and has a role in multimodal analgesic and enhanced recovery after surgery. Whether parecoxib exerts any actions on these types of ionic currents remains unclear. In this study, we investigated whether it exerts any effects on ion currents in differentiated NG108-15 neuronal cells. Cell exposure to parecoxib (1-30 μM) caused a reversible reduction in the amplitude of IK(DR) with an IC50 value of 9.7 μM. The time course for the IK(DR) inactivation in response to a long-lasting pulse was changed to the biexponential process during cell exposure to 3 μM parecoxib. Other agents known to inhibit the cyclooxygenase activity have minimal effects on IK(DR) . Parecoxib enhanced the degree of excessive accumulative inhibition of IK(DR) inactivation evoked by a train of brief repetitive stimuli. This compound suppressed the amplitude of M-type K+ current. It depressed the peak amplitude of voltage-gated Na+ current with no change in the current-voltage relationship of this current. However, it did not have any effect on hyperpolarization-activated cation current. No change in the expression level of KV 3.1 mRNA was detected in the presence of parecoxib. The effects of parecoxib on ion currents are direct and unrelated to its inhibition of the enzymatic activity of cyclooxygenase-2. The inhibition of these ion channels by parecoxib may partly contribute to the underlying mechanisms by which it affects neuronal function in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app