Add like
Add dislike
Add to saved papers

Molecular cloning and functional characterization of a short peptidoglycan recognition protein from triangle-shell pearl mussel (Hyriopsis cumingii).

Peptidoglycan (PGN) is an important target of recognition in invertebrate innate immunity. PGN recognition proteins (PGRPs) are responsible for PGN recognition. In this study, we cloned and functionally analyzed a short PGRP (HcPGRP2) from the triangle-shell pearl mussel Hyriopsis cumingii. The full-length cDNA sequence of HcPGRP2 gene was 1185 bp containing an open reading frame of 882 bp encoding a 293 amino acid protein. HcPGRP2 was predicted to have two SH3b domains and a conserved C-terminal PGRP domain. Quantitative real-time RT-PCR showed that HcPGRP2 was expressed in all examined tissues and its expression was induced most significantly by Staphylococcus aureus and Vibrio parahaemolyticus in the hepatopancreas and gills. RNA interference by siRNA results revealed that HcPGRP2 was involved in the regulation of whey acidic protein, theromacin, and defensin expression. As a pattern-recognition receptor, recombinant HcPGRP2 (rHcPGRP2) protein can bind and agglutinate (Ca2+ dependent) all tested bacteria. rHcPGRP2 exhibited specific binding to PGN but not to lipopolysaccharide. Moreover, rHcPGRP2 inhibited the growth activities of S. aureus and V. parahaemolyticus in vitro and accelerated the clearance of V. parahaemolyticus in vivo. Overall, our results indicated that HcPGRP2 may play an important role in the antibacterial immune mechanisms of H. cumingii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app