Journal Article
Review
Add like
Add dislike
Add to saved papers

A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential.

Cardiac glycosides (CGs) are secondary compounds found in plants and amphibians and are widely distributed in nature with potential cardiovascular action. Their mechanism is based on the blockage of the heart's sodium potassium ATPase, with a positive inotropic effect. Some of the most well-known CGs are digoxin, ouabain, oleandrin, and bufalin. They have similar chemical structures: a lactone ring, steroid ring, and sugar moiety. Digoxin, ouabain, and oleandrin are classified as cardenolides, consisting of a lactone ring with five carbons, while bufalin is classified as bufodienolides, with a six-carbon ring. Small structural differences determine variations in the toxicokinetics and toxicodynamics of such substances. Most case reports of poisoning caused by CGs are associated with cardiovascular toxicity, causing a variety of arrhythmias and lesions in the heart tissue. Experimental studies also describe important similarities among different CGs, especially regarding species sensitivity. Recent studies furthermore focus on their antineoplastic potential, with controversial results. Data from research studies and case reports were reviewed to identify the main characteristics of the CGs, including toxicokinetics, toxicodynamics, clinical signs, electrocardiographic, pathological findings, antineoplastic potential and the main techniques used for diagnostic purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app