Add like
Add dislike
Add to saved papers

Spinal cord injury induced Neuregulin 1 signaling changes in mouse prefrontal cortex and hippocampus.

Brain Research Bulletin 2018 December 8
Accumulated evidence has recently demonstrated that spinal cord injury (SCI) can lead to chronic damage in a wide range of brain regions. Neuregulin 1 (Nrg1) signaling has been broadly recognized as an important mechanism contributing to neural differentiation and regeneration. We here studied the effect of SCI on Nrg1 signaling in prefrontal cortex (PFC) and hippocampus (HIP) in a mouse model. As was indicated by the increased levels of GFAP and Iba-1, our results demonstrated that SCI significantly induced activation of astrocytes and microglial cells in both PFC and HIP. In addition, both western blot and morphological assay demonstrated that Nrg1 was altered in both regions at 8 weeks post SCI, which was accompanied with decreased phosphorylation levels of its cognitive receptors Neu and ErbB4. Our combined results indicated that SCI can influence Nrg1 signaling, which may contribute to the worsening of pathophysiological changes in major brain regions during SCI. These results also suggested that exogenous Nrg1 treatment may have a therapeutic role in counteracting SCI-induced brain damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app