Add like
Add dislike
Add to saved papers

Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level.

Bifidobacteria are representative probiotics which are defined as live microorganisms that confer a health benefit on the host. Because of their safety and healthfulness when applied to humans, bifidobacteria are suitable as genetically engineered bacteria for applications to benefit human physiology and pathology. However, molecular biological studies of bifidobacteria have been limited due to insufficient genetic tools including effective transformation methods. The aim of this study is to improve the electroporation-mediated transformation efficiency of bifidobacteria to a reproducibly high level. The crucial factors that determine electroporation efficiency are the restriction-modification system, together with the cell wall and cell membrane structure of the bacteria. We optimized the bifidobacterial electroporation conditions by focusing on these factors as well as the amount of plasmid DNA used, the electrical parameters and the bacterial growth phase. As a result, the electroporation efficiency of B. bifidum BGN4 drastically and consistently increased from 103 to 105  CFU / μg DNA. The most significant factor for increasing the electroporation efficiency was the cell wall weakening mediated by NaCl, which improved the electroporation frequency by 20 times. Because the optimized electrotransformation conditions reported here should be widely applicable to other Bifidobacterium species, these could promote the extensive genetic manipulation of the various Bifidobacterium species in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app