Add like
Add dislike
Add to saved papers

Improved visualization of hypodense liver lesions in virtual monoenergetic images from spectral detector CT: Proof of concept in a 3D-printed phantom and evaluation in 74 patients.

OBJECTIVES: The well-known boost of iodine associated-attenuation in low-keV virtual monoenergetic images (VMI_low) is frequently used to improve visualization of lesions and structures taking up contrast media. This study aimed to evaluate this concept in reverse. Hence to investigate if increased attenuation within the liver allows for improved visualization of little or not-enhancing lesions.

METHODS: A 3D-printed phantom mimicking the shape of a human liver exhibiting a lesion in its center was designed and printed. Both, parenchyma- and lesion-mimic were filled with different solutions exhibiting 80/100/120HU and 0/15/40/60HU, respectively. Further, a total of 74 contrast-enhanced studies performed on a spectral detector CT scanner (SDCT) were included in this retrospective study. Patients had MRI or follow-up proven cysts and/or hypodense metastases. VMI of 40-200 keV as well as conventional images (CI) were reconstructed. ROI were placed in lesion and parenchyma(-mimics) on CI and transferred to VMI. Signal- and contrast-to-noise ratio were calculated (S-/CNR). Further, two radiologists independently evaluated image quality. Data was statistically assessed using ANOVA or Wilcoxon-test.

RESULTS: In phantoms, S/CNR was significantly higher in VMI_low. The cyst-mimic in highly attenuating parenchyma-mimic on CI yielded a CNR of 6.4 ± 0.8; using VMI_40 keV, mildly hypodense lesion-mimic in poorly attenuating parenchyma-mimic exhibited a similar CNR (5.8 ± 0.9; p ≤ 0.05). The same tendency was observed in patients (cyst in CI/metastasis in VMI_40 keV: 4.4 ± 1.2/3.9 ± 1.8; p ≤ 0.05). Qualitative analysis indicated a benefit of VMI_40 keV (p ≤ 0.05).

CONCLUSIONS: VMI_low from SDCT allow for an improved visualization of hypodense focal liver lesions exploiting the concept of contrast blooming in reverse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app